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Abstract. We present and compare three generically applicable signal processing methods for
periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a
first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical
frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes
of the decimated signal are determined by either decimated linear predictor, decimated Padé
approximant, or decimated signal diagonalization. These techniques, which would have been
numerically unstable without the windowing, provide numerically more accurate semiclassical
spectra than does the filter diagonalization method.

1. Introduction

The semiclassical quantization of systems with an underlying chaotic classical dynamics is
a nontrivial problem due to the fact that Gutzwiller’s trace formula [1, 2] does not usually
converge in those regions where the eigenenergies or resonances are located. Various
techniques have been developed to circumvent the convergence problem of periodic orbit
theory. Examples are the cycle expansion technique [3], the Riemann–Siegel-type formula
and pseudo-orbit expansions [4], surface of section techniques [5], and a quantization rule
based on a semiclassical approximation to the spectral staircase [6]. These techniques have
proven to be very efficient for systems with special properties, e.g., the cycle expansion for
hyperbolic systems with an existing symbolic dynamics, while the other methods mentioned
have been used for the calculation of bound spectra.

Recently, an alternative method based upon filter diagonalization (FD) has been introduced
for the analytic continuation of the semiclassical trace formula [7,8]. The FD method requires
knowledge of the periodic orbits up to a given maximum period (classical action), which
depends on the mean density of states. The same holds true for the three methods presented in
this paper. The semiclassical eigenenergies or resonances are obtained byharmonic inversion
of the periodic orbit recurrence signal. The FD method can be generally applied to both open
and bound systems and has also proven powerful, e.g., for the calculation of semiclassical
transition matrix elements [9] and the quantization of systems with mixed regular–chaotic
phase space [10]. For a review on periodic orbit quantization by harmonic inversion see [11].

In this paper the techniques for the harmonic inversion of periodic orbit signals are further
developed. The semiclassical signal, in action or time, corresponds to a ‘spectrum’ or response
in the frequency domain that is composed of a huge, in principle infinite, number of frequencies.
To extract these frequencies and their corresponding amplitudes is a nontrivial task. In previous
work [7,8,11] the periodic orbit signal has been harmonically inverted by means of FD [12–14],
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which is designed for the analysis of time signals given on an equidistant grid. The periodic
orbit recurrence signal is given as a sum over usually unevenly spacedδ functions. A smooth
signal, from which evenly spaced values can be read off, is obtained by a convolution of this
sum with, e.g., a narrow Gaussian function. The disadvantages of this approach are twofold.
Firstly, FD acts on this signal more or less like a ‘black-box’ and, as such, does not lend itself to
a detailed understanding of semiclassical periodic orbit quantization. Secondly, the smoothed
semiclassical signal usually consists of a huge number of data points. The handling of such
large data sets, together with the smoothing, may lead to significant numerical errors in some
of the results for the semiclassical eigenenergies and resonances.

Here, we propose three alternative methods for the harmonic inversion of the periodic
orbit recurrence signal that avoid these problems. In a first step we create a shortened signal
which is constructed from the original signal and designed to be correct only in a window,
i.e., a short frequency range of the total band width. Because the original signal is given as
a periodic orbit sum ofδ functions, this ‘filtering’ can be performed analytically resulting in
a decimated periodic orbit signal with a relatively small number of equidistant grid points.
In a second step the frequencies and amplitudes of the decimated signal are determined from
a set of nonlinear equations. To solve the nonlinear system, we introduce three different
processing methods: decimated linear predictor (DLP), decimated Padé approximant (DPA),
and decimated signal diagonalization (DSD). The standard and well known linear predictor
(LP) and Pad́e approximant (PA) would not have yielded numerically stable solutions if the
signal had not first been decimated by the windowing (filtering) procedure. Furthermore, this
separation of the harmonic inversion procedure into various steps may lead to a clearer picture
of the periodic orbit quantization method. Numerical examples will demonstrate that the
techniques proposed in this paper also provide more accurate results than previous applications
of FD.

The paper is organized as follows. In section 2 we briefly review the general idea of
periodic orbit quantization by harmonic inversion. In section 3 we construct the band-limited
decimated periodic orbit signal which is analysed in section 4 with the help of three different
methods, namely DLP, DPA and DSD. In section 5 we present and compare results for the
three-disc scattering system as a physical example and the zeros of the Riemann zeta function
as a mathematical model for periodic orbit quantization. Some concluding remarks are given
in section 6.

2. Periodic orbit quantization by harmonic inversion

In order to understand the following, a brief recapitulation of the basic ideas of periodic orbit
quantization by harmonic inversion is necessary. For further details see [11].

Following Gutzwiller [1, 2] the semiclassical response function for chaotic systems is
given by

gsc(E) = gsc
0 (E) +

∑
po

Apoe
iSpo (1)

wheregsc
0 (E) is a smooth function andSpo andApo are the classical actions and weights

(including phase information given by the Maslov index) of the periodic orbit contributions.
Equation (1) is also valid for integrable systems when the periodic orbit quantities are calculated
not with Gutzwiller’s trace formula, but with the Berry–Tabor formula [15] for periodic orbits
on rational tori. The eigenenergies and resonances are the poles of the response function.
Unfortunately, the semiclassical approximation (1) does not converge in the region of the
poles and hence the problem is the analytic continuation ofgsc(E) to this region.
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As done previously [7,8,11], we will also make the (weak) assumption that the classical
system has a scaling property, i.e., the shape of periodic orbits does not depend on the scaling
parameter,w, and the classical action scales as

Spo = wspo. (2)

In scaling systems, the fluctuating part of the semiclassical response function,

gsc(w) =
∑
po

Apoe
iwspo (3)

can be Fourier transformed readily to obtain the semiclassical trace of the propagator

Csc(s) = 1

2π

∫ +∞

−∞
gsc(w)e−isw dw =

∑
po

Apoδ(s − spo). (4)

The signalCsc(s) hasδ-spikes at the positions of the classical periods (scaled actions)s = spo

of periodic orbits and with peak heights (recurrence strengths)Apo, i.e.,Csc(s) is Gutzwiller’s
periodic orbit recurrence function. Consider now the quantum mechanical counterparts of
gsc(w) andCsc(s) taken as the sums over the poleswk of the Green function,

gqm(w) =
∑
k

dk

w − wk + iε
(5)

Cqm(s) = 1

2π

∫ +∞

−∞
gqm(w)e−isw dw = −i

∑
k

dke
−iwks (6)

with dk being the residues associated with the eigenvalues. In the case under study, i.e.,
density of state spectra, thedk are the multiplicities of eigenvalues and should be equal to 1 for
nondegenerate states. Semiclassical eigenenergieswk and residuesdk can now, in principle,
be obtained by adjusting the semiclassical signal, equation (4), to the functional form of the
quantum signal, equation (6), with the{wk, dk} being free generally complex frequencies and
amplitudes. This procedure is known as ‘harmonic inversion’. The numerical procedure of
harmonic inversion is a nontrivial task, especially if the number of frequencies in the signal
is large (e.g., more than a 1000) or even infinite as is usually the case for periodic orbit
quantization. Note that the conventional way to perform the spectral analysis, i.e., the Fourier
transform of equation (4) will bring us back to analysing the nonconvergent response function
gsc(w) in equation (3). The periodic orbit signal (4) can be harmonically inverted by application
of FD [12–14], which allows one to calculate a finite and relatively small set of frequencies and
amplitudes in a given frequency window. The usual implementation of FD requires knowledge
of the signal on an equidistant grid. Signal (4) is not a continuous function. However, a smooth
signal can be obtained by a convolution ofCsc(s) with, e.g., a Gaussian function,

Csc
σ (s) =

1√
2πσ

∑
po

Apoe
−(s−spo)

2/2σ 2
. (7)

As can easily be seen, the convolution results in a damping of the amplitudes,dk → d
(σ)
k =

dk exp(−w2
kσ

2/2). The widthσ of the Gaussian function should be chosen sufficiently small
to avoid an overly strong damping of amplitudes. To properly sample each Gaussian a dense
grid with steps1s ≈ σ/3 is required. Therefore, the signal (7) analysed by FD usually consists
of a large number of data points. The numerical treatment of this large data set may suffer
from rounding errors and loss of accuracy. Additionally, the ‘black-box’-type procedure of
harmonic inversion by FD, which intertwines windowing and processing, does not provide
any opportunity to seek a deeper understanding of semiclassical periodic orbit quantization. It
is therefore desirable to separate the harmonic inversion procedure into two sequential steps:
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firstly, the filtering procedure that does not require smoothing and, secondly, a procedure for
extracting the frequencies and amplitudes. In section 3 we will construct, by analytic filtering, a
band-limited signal which consists of a relatively small number of frequencies. In section 4 we
will present methods to extract the frequencies and amplitudes of such band-limited decimated
signals.

3. Construction of band-limited decimated signals by analytical filtering

Consider a signal of a presumably large lengthN . We split the corresponding Fourier spectrum,
which is also of lengthN , intoM frequency intervals. In general, a frequency filter can be
applied to a given signal by application of the Fourier transform [16, 17]. Specifically, the
signal, in time or action, is first transformed to the frequency domain, e.g., by application of
the fast Fourier transform (FFT) or by using the closed-form expression, if available, for the
Fourier integral. The transformed signal, which is essentially a low-resolution spectrum, is
multiplied with a frequency filter functionf (w) localized around a central frequency,w0, and
zeroed out everywhere else outside the selected window. This leads to a band-limited Fourier
spectrum. The frequency filterf (w) can be rather general; typical examples are a rectangular
window or a Gaussian function. The resulting filtered or band-limited spectrum is then shifted
by−w0, relocated symmetrically around the frequency origin,w = 0, and transformed back
to the time domain by the application of the inverse FFT to produce a band-limited signal valid
only in the window defined by the filter function. Such a band-limited signal still has the same
original lengthN . It is at this step that we apply decimation which amounts to an enhancement
of the sampling time by a factor ofM thus leading finally to a band-limited decimated signal
of length [N/M], where [u] denotes the integer part ofu. In other words, since the bandwidth
of the band-limited decimated signal isM times smaller than that of the original signal, the
sampling rate, or dwell time, between signal samplings can now beM times larger. Hence,
the filtered or band-limited signal can be reduced by retaining only those signal points for
which the time or action indices are, say, 1,M + 1, 2M + 1, . . . . This technique is known as
‘beamspacing’ [16] or ‘decimation’ [17] of band-limited signals. The flexibility in the choice
of window size can ensure a numerically stable implementation of the processing methods
presented below.

The special form of the periodic orbit signal (4) as a sum ofδ functions allows for an even
simpler procedure, namely analytical filtering. In the following we will apply a rectangular
filter, i.e.,f (w) = 1 for frequenciesw ∈ [w0 − 1w,w0 +1w], andf (w) = 0 outside the
window. Generalization to other types of frequency filters is straightforward. Starting from
the semiclassical response function (spectrum)gsc(w) in equation (3), which is itself a Fourier
transform of the ‘signal’ (4), and using a rectangular window we obtain, after evaluating the
‘second’ Fourier transform, the band-limited (bl) periodic orbit signal,

Csc
bl (s) =

1

2π

∫ w0+1w

w0−1w
gsc(w)e−is(w−w0) dw

= 1

2π

∑
po

Apo

∫ w0+1w

w0−1w
eisw0−i(s−spo)w dw

=
∑
po

Apo
sin [(s − spo)1w]

π(s − spo)
eispow0. (8)

The introduction ofw0 into the arguments of the exponential functions in (8), causes a shift of
frequencies by−w0 in the frequency domain. Note thatCsc

bl (s) is a smooth function and can
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be easily evaluated on an arbitrary grid of pointssn < smax provided the periodic orbit data are
known for the set of orbits with classical actionspo < smax.

Applying now the same filter used for the semiclassical periodic orbit signal to the quantum
one, we obtain the band-limited quantum signal

C
qm
bl (s) =

1

2π

∫ w0+1w

w0−1w
gqm(w)e−is(w−w0) dw

= −i
K∑
k=1

dke
−i(wk−w0)s |wk − w0| < 1w. (9)

In contrast to the signalCqm(s) in equation (6), the band-limited quantum signal consists of a
finitenumber of frequencieswk, k = 1, . . . , K, whereK can be of the order of∼(50–200) for
an appropriately chosen frequency window,1w. The problem of adjusting the band-limited
semiclassical signal in equation (8) to its quantum mechanical analogue in equation (9) can
now be written as a set of 2K nonlinear equations

Csc
bl (nτ) ≡ cn = −i

K∑
k=1

dke
−iw′knτ n = 0, 1, . . . ,2K − 1 (10)

for the 2K unknown variables, namely the shifted frequencies,w′k ≡ wk−w0, and amplitudes,
dk. The signal now becomes ‘short’ (decimated) as it can be evaluated on an equidistant grid,
s = nτ , with step widthτ ≡ π/1w. It is important to note that the number of signal points
cn in equation (10) is usually much smaller than a reasonable discretization of the signal
Csc
σ (s) in equation (7), which is the starting point for harmonic inversion by FD. Therefore,

the discrete signal pointscn ≡ Csc
bl (nτ) are called the ‘band-limited decimated’ periodic orbit

signal. Methods to solve the nonlinear system, equation (10), are discussed in section 4 below.
It should also be noted that the analytical filtering in equation (8) is not restricted to periodic

orbit signals, but can be applied, in general, to any signal given as a sum ofδ functions. An
example is the high-resolution analysis of quantum spectra [11,18], where the density of states
reads%(E) =∑n δ(E − En).

4. Harmonic inversion of decimated signals

In this section we want to solve the nonlinear set of equations

cn =
K∑
k=1

dkz
n
k n = 0, 1, . . . ,2K − 1 (11)

wherezk ≡ exp(−iw′kτ ) anddk are generally complex variational parameters. For notational
simplicity we have absorbed the factor of−i on the right-hand side of equation (10) into thedk
with the understanding that this should be corrected for at the end of the calculation. We assume
that the number of frequencies in the signal is relatively small (K ∼ 50–200). Although the
system of nonlinear equations is, in general, still ill-conditioned, frequency filtering reduces the
number of signal points, and hence the number of equations. Several numerical techniques, that
otherwise would be numerically unstable, can now be applied successfully. In the following
we introduce three different methods, namely DLP, DPA, and DSD.

4.1. Decimated linear predictor

The problem of solving equation (11) was already addressed in the 18th century by Baron de
Prony, who converted the nonlinear set of equations (11) to a linear algebra problem. Today
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this method is known as LP. Our method, called DLP, strictly applies the procedure of LP
but with one essential difference; the original signalCsc(s) is replaced by its band-limited
decimated counterpartcn ≡ Csc

bl (nτ).
Equation (11) can be written in matrix form for the signal pointscn+1 to cn+K , cn+1

...

cn+K

 =
 zn+1

1 · · · zn+1
K

...
...

zn+K
1 · · · zn+K

K

 d1
...

dK

 . (12)

From the matrix representation (12) it follows that

cn = (zn1 · · · znK)
 zn+1

1 · · · zn+1
K

...
...

zn+K
1 · · · zn+K

K

−1 cn+1
...

cn+K

 = K∑
k=1

akcn+k (13)

which means that every signal pointcn can be ‘predicted’ by a linear combination of the
K subsequent points with a fixed set of coefficientsak, k = 1, . . . , K. The first step of
the LP method is to calculate these coefficients. Writing equation (13) in matrix form with
n = 0, . . . , K − 1, we obtain the coefficientsak as a solution of the linear set of equations, c1 · · · cK

...
...

cK · · · c2K−1

 a1
...

aK

 =
 c0

...

cK−1

 . (14)

The second step is the determination of the parameterszk in equation (11). Using equations (13)
and (11) we obtain

cn =
K∑
k=1

akcn+k =
K∑
l=1

K∑
k=1

akdlz
n+k
l (15)

and thus
K∑
k=1

[ K∑
l=1

alz
n+l
k − znk

]
dk = 0. (16)

Equation (16) is satisfied for arbitrary sets of amplitudesdk whenzk is a zero of the polynomial
K∑
l=1

alz
l − 1= 0. (17)

The parameterszk = exp(−iw′kτ ) and thus the frequencies

w′k =
i

τ
log(zk) (18)

are therefore obtained by searching for the zeros of the polynomial in equation (17). Note that
this is the only nonlinear step of the algorithm and numerical routines for finding the roots of
polynomials are well established. In the third and final step, the amplitudesdk are obtained
from the linear set of equations

cn =
K∑
k=1

dkz
n
k n = 0, . . . , K − 1. (19)

To summarize, the LP method reduces thenonlinearset of equations (11) for the variational
parameters{zk, dk} to two well known problems, i.e., the solution of twolinear sets of
equations (14) and (19) and the root search of a polynomial, equation (17), which is a nonlinear
but familiar problem. The matrices in equations (14) and (19) are a Toeplitz and Vandermonde
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matrix, respectively, and special algorithms are known for the fast solution of such linear
systems [19]. However, when the matrices are ill-conditioned, conventionalLU decomposition
of the matrices is numerically more stable, and, furthermore, an iterative improvement of
the solution can significantly reduce errors arising from numerical round-off. The roots of
polynomials can be found, in principle, by application of Laguerre’s method [19]. However,
it turns out that an alternative method, i.e., the diagonalization of the Hessenberg matrix

A =


− aK−1

aK
− aK−2

aK
· · · − a1

aK
− a0
aK

1 0 · · · 0 0
0 1 · · · 0 0
...

...

0 0 · · · 1 0

 (20)

for which the characteristic polynomialP(z) = det[A − zI] = 0 is given by equation (17)
(with a0 = −1), is a numerically more robust technique for finding the roots of high degree
(K & 60) polynomials [19].

4.2. Decimated Pad́e approximant

As an alternative method for solving the nonlinear system (11) we now propose to apply the
method of DPA. This is the standard Padé approximant (PA) but applied to our band-limited
decimated signalcn. Let us assume for the moment that the signal pointscn are known up to
infinity, n = 0, 1, . . .∞. Interpreting thecn as the coefficients of a Maclaurin series in the
variablez−1, we can then define the functiong(z) =∑∞n=0 cnz

−n. With equation (11) and the
sum rule for geometric series we obtain

g(z) ≡
∞∑
n=0

cnz
−n =

K∑
k=1

dk

∞∑
n=0

(zk/z)
n =

K∑
k=1

zdk

z− zk ≡
PK(z)

QK(z)
. (21)

The right-hand side of equation (21) is a rational function with polynomials of degreeK in
the numerator and denominator. Evidently, the parameterszk = exp(−iw′kτ ) are the poles of
g(z), i.e., the zeros of the polynomialQK(z). The parametersdk are calculated via the residues
of the last two terms of (21). We obtain

dk = PK(zk)

zkQ
′
K(zk)

(22)

with the prime indicating the derivative d/dz. Of course, the assumption that the coefficients
cn are known up to infinity is not fulfilled and, therefore, the sum on the left-hand side of
equation (21) cannot be evaluated in practice. However, the convergence of the sum can
be accelerated by application of DPA. Indeed, with DPA, knowledge of 2K signal points
c0, . . . , c2K−1 is sufficient for the calculation of the coefficients of the two polynomials

PK(z) =
K∑
k=1

bkz
k and QK(z) =

K∑
k=1

akz
k − 1. (23)

The coefficientsak, k = 1, . . . , K are obtained as solutions of the linear set of equations

cn =
K∑
k=1

akcn+k n = 0, . . . , K − 1

which is identical to equations (13) and (14) for DLP. Once thea are known, the coefficients
bk are given by theexplicit formula

bk =
K−k∑
m=0

ak+mcm k = 1, . . . , K. (24)
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It should be noted that the different derivations of DLP and DPA provide the same polynomial
whose zeros are thezk parameters, i.e., thezk calculated with both methods exactly agree.
However, DLP and DPA do differ in the way the amplitudes,dk, are calculated. It is also
important to note that DPA is applied here as a method for signal processing, i.e., in a different
context to that in [20], where the Padé approximant is used for the direct summation of the
periodic orbit terms in Gutzwiller’s trace formula.

4.3. Decimated signal diagonalization

In [12, 14] it has been shown how the problem of solving the nonlinear set of equations (11)
can be recast in the form of the generalized eigenvalue problem,

UBk = zkSBk. (25)

The elements of theK ×K operator matrixU and overlap matrixS depend trivially upon the
cn [14]:

Uij = ci+j+1 Sij = ci+j i, j = 0, . . . , K − 1. (26)

Note that the operator matrixU is the same as in the linear system (14), i.e. the matrix form
of equation (13) of DLP. The matricesU andS in equation (25) are complex symmetric (i.e.,
nonHermitian), and the eigenvectorsBk are orthogonal with respect to the overlap matrixS,

(Bk|S|Bk′) = Nkδkk′ (27)

where the brackets define a complex symmetric inner product(a|b) = (b|a), i.e., no complex
conjugation of eithera orb. The overlap matrixS is not usually positive definite and therefore
theNk are, in general, complex normalization parameters. An eigenvectorBk cannot be
normalized forNk = 0. The amplitudesdk in equation (11) are obtained from the eigenvectors
Bk via

dk = 1

Nk

[ K−1∑
n=0

cnBk,n

]2

. (28)

The parameterszk in equation (11) are given as the eigenvalues of the generalized eigenvalue
problem (25), and are simply related to the frequenciesw′k in equation (10) viazk =
exp(−iw′kτ ).

The three methods introduced above (DLP, DPA and DSD) look technically quite different.
With DLP the coefficients of the characteristic polynomial (17) and the amplitudesdk are
obtained by solving two linear sets of equations (14) and (19). Note that the complete set of
zeroszk of equation (17) is required to solve for thedk in equation (19). The DPA method is even
simpler, as only one linear system, equation (14), has to be solved to determine the coefficients
of the rational functionPK(z)/QK(z). Finding the zeros of equation (17) gives knowledge
about selected parameterszk, and allows one to calculate the corresponding amplitudesdk via
equation (22). The DSD method requires the most numerical effort, because the solution of
the generalized eigenvalue problem (25) for both the eigenvalueszk and eigenvectorsBk is
needed.

It is important to note that the three methods, in spite of their different derivations, are
mathematically equivalent and provide the same results for the parameters{zk, dk}, when
the following two conditions are fulfilled: the nonlinear set of equations (11) has a unique
solution, when, firstly, the matricesU andS in equation (26) have a nonvanishing determinant
(detU 6= 0, detS 6= 0), and, secondly, the parameterszk are nondegenerate (zk 6= zk′

for k 6= k′). These conditions guarantee the existence of a unique solution of the linear
equations (14) and (19), the nonsingularity of the generalized eigenvalue problem (25), and the
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nonvanishing of both the derivativesQ′K(zk) in equation (22) and the normalization constants
Nk in equations (27) and (28). Equation (11) usually has no solution in the case of degenerate
zk parameters. However, degeneracies can be handled with a generalization of the ansatz (11)
and modified equations for the calculation of the parameters. This special case will be reported
elsewhere.

While the parameterszk in equation (11) are usually unique, the calculation of the
frequenciesw′k via equation (18) is not unique, because of the multivalued property of the
complex logarithm. To obtain the ‘correct’ frequencies it is necessary to appropriately adjust
the range1w of the frequency filter and the step widthτ of the band-limited decimated signal
(10). We recommend the following procedure. The most convenient approach is to choose
first the centrew0 of the frequency window and the numberK of frequencies within that
window. Note thatK determines the dimension of the linear systems, and hence the degree
of the polynomials which have to be handled numerically, and is therefore directly related to
the computational effort required. Frequency windows are selected to be sufficiently narrow
to yield values for the rank betweenK ≈ 50 andK ≈ 200. The step width for the decimated
signal should be chosen as

τ = smax

2K
(29)

with smax being the total length of the periodic orbit signal. The relationzk = exp(−iw′kτ )
projects the frequency windoww′ ∈ [−1w,+1w] onto the unit circle in the complex plane
when the range of the frequency window is chosen as

1w = π

τ
= 2πK

smax
. (30)

When calculating the complex logarithm with arg logz ∈ [−π,+π ], equation (18) provides
the ‘correct’ shifted frequenciesw′k and thus the frequencieswk = w0 +w′k.

To achieve convergence, the lengthsmax of the periodic orbit signal must be sufficiently
long to ensure that the number of semiclassical eigenvalues within the frequency window is
less thanK. As a consequence the harmonic inversion procedure usually provides not only the
true semiclassical eigenvalues but also some spurious resonances. The spurious resonances
are identified by low or near-zero values of the corresponding amplitudesdk and can also
be detected by analysing the shifted decimated signal, i.e., signal pointsc1, . . . , c2K , instead
of c0, . . . , c2K−1. The true frequencies usually agree to very high precision, while spurious
frequencies show by orders of magnitude larger deviations.

5. Results and discussion

In this section we want to demonstrate the efficiency and accuracy of the method introduced
above by way of two examples: the three-disc repeller as an open physical system and the
zeros of the Riemann zeta function as a mathematical model for periodic orbit quantization
of bound chaotic systems. Both systems have previously been investigated by means of
FD [7, 8, 11], which allows us to make a direct comparison of the results. The three-disc
scattering system has also served as a prototype for the development and application of cycle
expansion techniques [3,21,22], and we will briefly discuss the differences between harmonic
inversion and cycle expansion.

5.1. The three-disc repeller

As the first example, we consider a billiard system consisting of three identical hard discs
with unit radii,R = 1, displaced from each other by the same distanced. This simple, albeit
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nontrivial, scattering system has already been used as a model within the cycle expansion
method [3,21,22] and periodic orbit quantization by harmonic inversion [7,8,11]. We therefore
give only a very brief introduction to the system and refer the reader to the literature for details.
The three-disc scattering system is invariant under the symmetry operations of the group C3v,
i.e., three reflections at symmetry lines and two rotations by 2π/3 and 4π/3. Resonances
belong to one of the three irreducible subspacesA1,A2, andE [23]. As in most previous work
we concentrate on the resonances of the subspaceA1 for the three-disc repeller withR = 1
andd = 6.

In billiards, which are scaling systems, the shape of the periodic orbits does not depend
on the energyE, and the classical action is given by the lengthL of the orbit, i.e.,
Spo = wspo = h̄kLpo (see equation (2)), wherew = k = |k| = √2ME/h̄ is the absolute
value of the wavevector to be quantized. Setting ¯h = 1, we usespo = Lpo in what follows.
In figure 1(a) we present the periodic orbit signalCsc(L) for the three-disc repeller in the
region 06 L 6 Lmax = 35. The signal is given as a periodic orbit sum of delta functions
δ(L − Lpo) weighted with the periodic orbit amplitudesApo (see equation (4)). The groups
with oscillating sign belong to periodic orbits with adjacent cycle lengths. Signals of this type
have been analysed (after convolution with a narrow Gaussian function, see equation (7)) by
FD in [7–11]. We now illustrate harmonic inversion of band-limited decimated periodic orbit
signals by DLP, DPA and DSD.

In a first step, a band-limited decimated periodic orbit signal is constructed as described in
section 3. As an example we chooseK = 100 as the rank of the nonlinear set of equations (10),
andk0 = 200 as the centre of the frequency window. The width of the frequency window
is given by1k = 2πK/Lmax = 200π/35 ≈ 18.0. The step width of the decimated signal
is τ = 1L = Lmax/2K = 0.175. The band-limited decimated periodic orbit signal points
cn = Csc

bl (L = n1L), with n = 0, . . . ,2K, are calculated with the help of equation (8)
and presented in figure 1(b). The solid and dashed lines are the real and imaginary parts of
Csc

bl (n1L), respectively. The modulations with spacingsπ/1k result from the superposition
of the sinc-like functions in equation (8).

The band-limited decimated periodic orbit signalCsc
bl (n1L) can now be analysed, in

a second step, with one of the harmonic inversion techniques introduced in section 4,
namely DLP, DPA or DSD. The resonances obtained by DLP are presented as plus symbols
in figure 1(c). The dotted lines at Rek = 182 and Rek = 218 show the borders of the
frequency window. The two symbols very close to the border on the left indicate spurious
resonances.

A long-range spectrum can be obtained by choosing several valuesw0 for the centre of
the frequency window in such a way that the windows slightly overlap. Figure 2 presents the
semiclassical resonances for the three-disc repeller in the range 06 Rek 6 250. The spectrum
has been obtained by harmonic inversion of decimated periodic orbit signals similar to that
in figure 1(b) but with an increased signal length,Lmax= 55. The plus symbols, crosses, and
squares denote the semiclassical resonances obtained by DLP, DPA and DSD, respectively.
The resonances obtained by the three different harmonic inversion techniques are in perfect
agreement, with the exception of a few resonances in the region Rek < 25. In this region the
matricesU andS in equation (26) are rather ill-conditioned, and the few discrepancies can
therefore be explained as numerical artifacts.

The spectrum presented in figure 2 was obtained previously in [8] by application of
FD [12–14]. In table 1 we compare the semiclassical eigenvaluesk and residuesdk of selected
resonances obtained by (a) FD and (b) harmonic inversion of band-limited decimated periodic
orbit signals. For nondegenerate resonances under study the residues should bedk = 1.
In [8] the residues of several resonances deviate significantly fromdk = 1 by more than 5%
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Figure 1. (a) Periodic orbit recurrence signal for the three-disc scattering system withR = 1,
d = 6 without filtering. The signal in the regionL 6 35 consists of 93 nonequidistant periodic
orbit contributions (including multiple repetitions). (b) Same as (a) filtered with frequency window
w ∈ [182, 218]. The decimated signal consists of 201 equidistant data points with1L = 0.175.
The solid and dashed lines are the real and imaginary part ofC(L), respectively. (c) Semiclassical
resonances obtained by harmonic inversion of the decimated signalC(L) in (b). The dotted lines
mark the borders of the frequency window.

(see the resonances marked by (a) in table 1). With harmonic inversion of decimated signals
the accuracy of the residues is increased by several orders of magnitude (see the resonances
marked by (b) in table 1). The semiclassical eigenvaluesk also reveal deviations between
the different numerical techniques. The resonances obtained by harmonic inversion of band-
limited decimated signals are in much better agreement with the results obtained by the cycle
expansion method [22] than those obtained by FD in [8].

Numerical values for the residues very close todk = 1 indicate well converged
semiclassical resonances, and this is the case for all resonances of the four bands closest
to the real axis in figure 2. Resonances with nonvanishingdk have also been obtained in
the region Rek > 120, Imk < −0.8 (see figure 2). These resonances, although not fully
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Figure 2. Semiclassical resonances for the three-disc scattering system (A1 subspace) withR = 1,
d = 6 obtained by harmonic inversion via DLP (plus symbols), DPA (crosses), and DSD (squares)
of the analytically decimated periodic orbit signal.

converged, are in qualitative agreement with exact quantum calculations [22]. It is important
to note that the different techniques for harmonic inversion of decimated signals, namely DLP,
DPA and DSD, yield the same results, even for those resonances which are not fully converged.
This illustrates the mathematical equivalence of the three methods as explained in section 4.

5.2. Harmonic inversion versus cycle expansion

The three-disc scattering system discussed in section 5.1 has purely hyperbolic classical
dynamics and has been used extensively as the prototype model within the cycle expansion
techniques [3,21,22]. As has been shown by Voros [24], Gutzwiller’s trace formula for unstable
periodic orbits can be recast in the form of an infinite and nonconvergent Euler product over
all periodic orbits. When the periodic orbits obey a symbolic dynamics the semiclassical
eigenenergies or resonances can be obtained as the zeros of the cycle expanded Gutzwiller–
Voros zeta function. Unfortunately, the convergence of the cycle expansion is restricted, due to
poles of the Gutzwiller–Voros zeta function [21]. The domain of analyticity of semiclassical
zeta functions can be extended [25,26] resulting in the ‘quasiclassical zeta function’ [22,26],
which is an entire function for the three-disc repeller. This approach allows one to calculate
semiclassical resonances in critical regions where the Gutzwiller–Voros zeta function does
not converge, at the cost, however, of many extra spurious resonances and with the rate of
convergence slowed down tremendously [22].

With the limited numerical accuracy of harmonic inversion by FD applied in [8], the
semiclassical resonances of the three-disc repeller in the region Imk < −0.6 were somewhat
unreliable. The improved accuracy of the analysis of band-limited decimated periodic orbit
signals introduced in the present paper now allows us to compare the two semiclassical
quantization techniques, namely harmonic inversion and cycle expansion methods, even for
resonances deep in the complex plane. We will demonstrate that the harmonic inversion
method provides semiclassical resonances in energy regions where the cycle expansion of the
Gutzwiller–Voros zeta function does not converge.

In figure 3 we present a part of the semiclassical resonance spectrum of figure 2 in the
region 256 Rek 6 65. The squares and crosses label the semiclassical resonances obtained
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Table 1. Semiclassical resonances and multiplicities for the three-disc scattering problem (A1
subspace) withR = 1, d = 6.

Rek Im k Redk Im dk

a 126.168 127 80 −0.217 265 68 0.999 975 32 0.000 005 23
b 126.168 127 67 −0.217 266 38 0.999 999 99 0.000 000 02
a 126.570 000 32 −0.307 179 94 0.999 698 30 −0.000 287 69
b 126.570 008 99 −0.307 189 55 1.000 000 78 −0.000 000 09
a 126.898 633 30 −0.610 583 35 1.248 549 08 −0.162 904 32
b 126.906 582 96 −0.595 704 69 1.000 623 26 −0.003 900 71
a 127.217 596 81 −0.320 102 87 1.000 427 52 0.000 452 32
b 127.217 582 49 −0.320 089 45 0.999 999 92 0.000 000 75
a 127.683 086 51 −0.243 413 98 0.999 936 10 −0.000 002 36
b 127.683 086 62 −0.243 415 88 1.000 000 01 0.000 000 05
a 128.121 160 88 −0.283 896 37 1.000 101 75 −0.000 222 29
b 128.121 167 53 −0.283 893 40 1.000 000 25 0.000 000 34
a 128.411 372 17 −0.615 774 14 1.324 225 38 −0.115 650 68
b 128.416 891 82 −0.596 646 61 1.000 313 95 −0.005 661 84
a 128.703 340 65 −0.304 426 55 1.000 395 70 0.000 113 10
b 128.703 337 42 −0.304 414 48 1.000 000 39 0.000 000 30
a 129.197 329 46 −0.267 888 59 0.999 876 56 −0.000 044 93
b 129.197 330 98 −0.267 892 40 1.000 000 03 0.000 000 11
a 129.673 196 99 −0.267 178 42 1.000 178 17 0.000 026 64
b 129.673 196 13 −0.267 173 27 0.999 999 82 0.000 000 17
a 129.929 272 07 −0.609 183 15 1.333 229 88 −0.021 703 82
b 129.930 185 79 −0.589 216 56 1.000 700 97 −0.006 114 00
a 130.187 962 23 −0.292 235 40 1.000 283 13 −0.000 127 43
b 130.187 966 44 −0.292 227 31 1.000 000 35 −0.000 000 11
a 130.710 980 79 −0.290 452 41 0.999 832 13 −0.000 126 09
b 130.710 985 01 −0.290 457 60 1.000 000 05 0.000 000 21
a 131.227 178 21 −0.257 364 73 1.000 000 71 0.000 173 24
b 131.227 173 26 −0.257 365 00 0.999 999 89 −0.000 000 15
a 131.448 892 08 −0.590 543 85 1.266 103 20 0.069 730 01
b 131.444 978 89 −0.573 528 43 1.001 290 44 −0.004 686 89

a FD method [8].
b DLP method.

by harmonic inversion of the decimated semiclassical periodic orbit signal and cycle expansion
of the Gutzwiller–Voros zeta function [22], respectively. The dotted line in figure 3 indicates
the borderline, Imk = −0.121 557 [3], which separates the domain of absolute convergence
of Gutzwiller’s trace formula from the region where analytic continuation is necessary. For the
two resonance bands slightly below this border the results of both semiclassical quantization
methods are in perfect agreement. The dashed line in figure 3 marks the abscissa of absolute
convergence for the Gutzwiller–Voros zeta function at Imk = −0.699 110 [25]. The
Gutzwiller–Voros zeta function provides several spurious resonances which accumulate at
Im k ≈ −0.9, i.e., slightly below the borderline of absolute convergence (see the crosses in
figure 3). The resonances in the region Imk < −0.9, especially those belonging to the fourth
band, are not described by the Gutzwiller–Voros zeta function but are obtained by the harmonic
inversion method (see the squares in figure 3).



1260 J Main et al

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

25 30 35 40 45 50 55 60 65

Im
 k

Re k

Figure 3. Semiclassical resonances (A1 subspace) for the three-disc scattering system withR = 1,
d = 6. Squares: harmonic inversion of the decimated semiclassical recurrence signal. Crosses:
cycle expansion of the Gutzwiller–Voros zeta function [22]. The dotted and dashed lines mark
the borderline for absolute convergence of Gutzwiller’s trace formula(Im k = −0.121 557) and
the Gutzwiller–Voros zeta function(Im k = −0.699 110), respectively. The harmonic inversion
method converges deeper in the complex plane than the Gutzwiller–Voros zeta function.

5.3. Zeros of the Riemann zeta function

As the second example to demonstrate the numerical accuracy of harmonic inversion of band-
limited decimated periodic orbit signals we investigate the Riemann zeta function which is a
mathematical model for periodic orbit quantization. Here we only briefly explain the idea of
this model and refer the reader to the literature [8,11] for details.

The hypothesis of Riemann is that all the nontrivial zeros of the analytic continuation of
the function

ζ(z) =
∞∑
n=1

n−z =
∏
p

(1− p−z)−1 (Rez > 1, p : primes) (31)

have real part12, so that the valuesw = wk, defined by

ζ( 1
2 − iwk) = 0 (32)

are all real or purely imaginary [27, 28]. The parameterswk can be obtained as the poles of
the function

g(w) =
∑
p

∞∑
m=1

Apmeiwspm (33)

where

Apm = i
log(p)

pm/2
(34)

spm = m log(p) (35)
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with p indicating the prime numbers. As was already pointed out by Berry [29], equation (33)
has the same mathematical form as Gutzwiller’s trace formula with the primes interpreted
as the primitive periodic orbits,Apm andspm the ‘amplitudes’ and ‘classical actions’ of the
periodic orbit contributions, andm formally counting the ‘repetitions’ of orbits. Equation (33)
converges only for Imw > 1

2 and analytic continuation is necessary to extract the poles of
g(w), i.e., the Riemann zeros. The advantage of studying the zeta function instead of a ‘real’
physical bound system is that no extensive periodic orbit search is necessary for the calculation
of Riemann zeros, as the only input data are just prime numbers. Harmonic inversion can be
applied to adjust the Fourier transform of equation (33), i.e.,

C(s) =
∑
p

∞∑
m=1

Apmδ(s − spm) (36)

to the functional form

Cex(s) = 1

2π

∫ +∞

−∞

∑
k

dk

w − wk + iε
e−isw dw = −i

∑
k

dke
−iwks (37)

where thewk are the Riemann zeros and the residuesdk have been introduced as adjustable
parameters which here should all be equal to 1.

In [8] about 2600 Riemann zeros to about 12 digit precision have been obtained by
harmonic inversion of the signal (36) withsmax = log(106) ≈ 13.82 using FD. However,
the numerical residues agree withdk = 1 only to about a 5 or 6digit precision. With harmonic
inversion of band-limited decimated signals the accuracy of both the Riemann zeroswk and the
multiplicities dk is improved by several orders of magnitude. In table 2 we compare selected
values obtained by (a) FD [8] and (b) DLP. The increase in accuracy can easily be seen, in
particular for the imaginary parts, Imwk and Imdk, which should both be equal to zero. The
same improvement in accuracy is also achieved by application of DPA and DSD.

The precise calculation of parametersdk = 1 for the residues of the Riemann zeros
does not seem to be of great interest. However, it should be noted that the multiplicities
may be greater than one, e.g., for some eigenvalues of integrable systems such as the circle
billiard [11, 30] where states with angular momentum quantum numberm 6= 0 are twofold
degenerate. As we have checked the techniques presented in this paper indeed yield the correct
multiplicities to very high precision. Thedk have also nontrivial values when used, e.g., for
the semiclassical calculation of diagonal matrix elements [30] and nondiagonal transition
strengths [9] in dynamical systems.

6. Conclusion

We have introduced three methods for semiclassical periodic orbit quantization, namely DLP,
DPA, and DSD for the harmonic inversion of band-limited decimated periodic orbit signals.
The characteristic feature of these methods is the strict separation of the two steps, namely the
analytical filtering of the periodic orbit signal and the numerical harmonic inversion of the band-
limited decimated signal. The separation of these two steps and the handling of small amounts
of data compared to other ‘black-box’-type signal processing techniques enables an easier and
deeper understanding of the semiclassical quantization method. Furthermore, applications to
the three-disc repeller and the Riemann zeta function demonstrate that the new methods provide
numerically more accurate results than previous applications of FD. A detailed comparison of
various semiclassical quantization methods reveals that quantization by harmonic inversion of
the band-limited decimated periodic orbit signal can even be applied in energy regions where
the cycle expansion of the Gutzwiller–Voros zeta function does not converge.
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Table 2. Nontrivial zeroswk and multiplicitiesdk for the Riemann zeta function.

k Rewk Imwk Redk Im dk

1a 14.134 725 14 4.05E−12 1.000 000 11 −5.07E−08
1b 14.134 725 14 −7.43E−15 1.000 000 00 2.63E−13
2a 21.022 039 64 −2.23E−12 1.000 000 14 1.62E−07
2b 21.022 039 64 2.48E−14 1.000 000 00 3.71E−13
3a 25.010 857 58 1.66E−11 0.999 999 75 −2.64E−07
3b 25.010 857 58 −4.70E−14 1.000 000 00 −7.04E−14
4a 30.424 876 13 −6.88E−11 0.999 999 81 −1.65E−07
4b 30.424 876 13 2.82E−13 1.000 000 00 5.58E−13
5a 32.935 061 59 7.62E−11 1.000 000 20 5.94E−08
5b 32.935 061 59 3.47E−14 1.000 000 00 1.14E−13

· · · · · · · · · · · · · · ·
2561a 3093.185 445 71 −2.33E−09 1.000 001 68 −1.50E−07
2561b 3093.185 445 72 −2.77E−13 1.000 000 00 1.08E−11
2562a 3094.833 068 42 2.07E−08 0.999 996 47 2.63E−06
2562b 3094.833 068 43 −8.77E−12 1.000 000 00 −5.20E−11
2563a 3095.132 031 22 −1.79E−08 1.000 004 59 1.70E−06
2563b 3095.132 031 24 3.70E−12 1.000 000 00 2.86E−11
2564a 3096.515 485 51 5.15E−09 0.999 998 68 2.74E−06
2564b 3096.515 485 51 −9.16E−13 1.000 000 00 −5.44E−12
2565a 3097.342 606 55 7.75E−09 0.999 999 18 5.12E−06
2565b 3097.342 606 53 −1.98E−12 1.000 000 00 −1.56E−11

a FD method [8].
b DLP method.

The methods introduced in this paper can be applied to the periodic orbit quantization
of systems with both chaotic and regular classical dynamics, when the periodic orbit signal
is calculated with Gutzwiller’s trace formula [1, 2] for isolated orbits and the Berry–Tabor
formula [15] for orbits on rational tori, respectively. More generally, any signal given as a
sum ofδ functions can be filtered analytically and analysed using the methods described in
sections 3 and 4. For example, the technique can also be applied to the harmonic inversion of
the density of states%(E) =∑n δ(E − En) of quantum spectra to extract information about
the underlying classical dynamics [11,18].

It is to be noted that all the signal processing techniques mentioned in this paper lend
themselves to a formulation where nondiagonal responses appear in the frequency domain and
their complementary cross-correlation-type signals appear in the time or action domain [30,31].
This is important as such methods allow for the use of shorter signals and hence, in the context
of this paper, fewer periodic orbits. The need to find large numbers of periodic orbits may
limit the practical utility of these methods and so any attempt to overcome this problem is
worth investigating. Cross-correlation methods also sample better and yield improved results
for poles (resonances) that lie deep in the complex plane than do straight correlation-based
signal processing techniques.
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